

(1) Find eqn of a line that contains
$$(2,0) \notin (0,-3)$$
.
 $m = \frac{0-(-3)}{2-0} = \frac{3}{2}$ $y - y_1 = m(x-x_1)$
 $y - 3 = \frac{3}{2}(x-0)$ $y = \frac{3}{2}x^{-3}$
 $y + 3 = \frac{3}{2}x$
(2) Sind eqn of a line that contains $(3,-2)$ and
Povallel to $2x - 3y = 5$.
 $-3y = -2x + 5$ $y - (-2) = \frac{2}{3}(x-3)$
 $y = \frac{-2}{-3}x + \frac{5}{-3}$ $y + 2 = \frac{2}{3}x - 2$
 $y = \frac{-2}{-3}x + \frac{5}{-3}$ $y + 2 = \frac{2}{3}x - 2$
 $y = \frac{2}{3}x - 1$

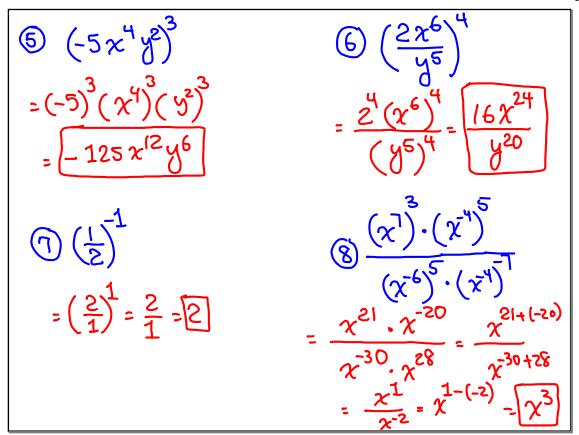
(3) Sind eqn of a line that contains
$$(-4, 1)$$
 with
(a) Zero Slope
Horizontal line
 $J = b$
 $J = b$
(3) Slope 2
 $J - J_1 = m(x - x_1)$
 $J - 1 = 2(x - 4)$
 $J - 1 = 2(x + 4)$
 $J - 1 = 2x + 8$
 $J - 1 = -\frac{1}{4}(x - 4)$
 $J - 1 = -\frac{1}{4}(x - 4)$

John has \$2.05 in Quarters
$$\notin$$
 Dimes only.
of quarters is I more than twice # Dimes
How many of each?
D -> Dimes $10D+25R=205$
 $R - PQuarters$ $R=2D+1$ $R=T$
 $10D+25(2D+1)=205$
 $10D+25(2D+1)=205$

Two angles are complementary.
The Sum of 3 times one of them and
twice the other one is 200°.
Sind the larger angle.

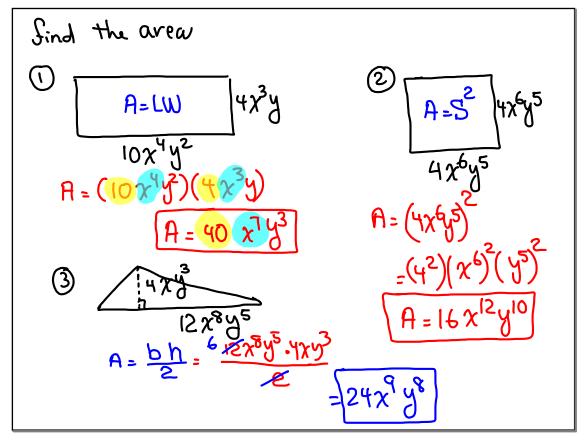
$$2(x + y = 90)$$

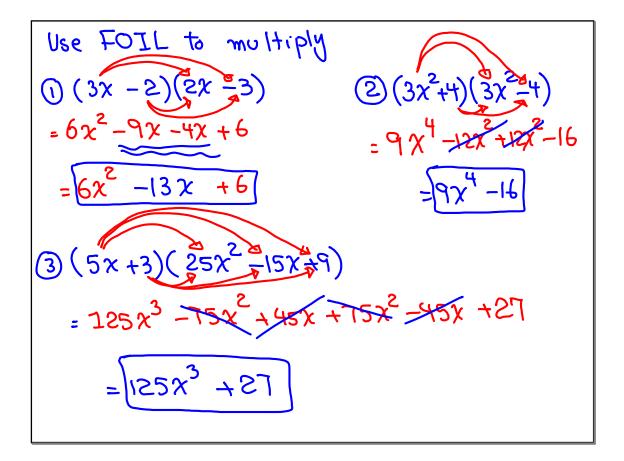
 $3x + 2y = 200$
 $x = 20$
 $20 + y = 70$
 $y = 70$
 $y = 70$


Two angles are supplementary.
5 times one of them is equal to 4 times
the other one.
$$\begin{cases} x + 3 = 180 \\ 5x - 4y = 180 \\ 5x - 4y = 0 \end{cases}$$

 $\begin{cases} 4x + 4y = 180 \\ 5x - 4y = 0 \\ 7x = 120 = 7 \\ 80 + y = 180 \\ 5x - 4y = 0 \end{cases}$
 $\begin{cases} 9x = 120 = 7 \\ x = 80 \\ 9x = 120 = 7 \\ y = 100 \\ 80 + y = 180 \\ 9x = 120 = 7 \\ y = 100 \\ y = 100 \end{cases}$

We need 100 liters of 36% alcohol Soln.
We have unlimited supply of 30%
$$\dot{\epsilon}$$
 40%
alcohol Soln. How many liters of each do we need?
 30% + 40% = 36% $100(\frac{30}{100}x + \frac{40}{100}y = \frac{36}{100})$
 x + $y = 100$
 $30x$ + $40y = 3600$
 $-3(x + y = 100)$
 $3x$ + $4y = 100$
 $3x$ + $4y = 3600$
 $3x$ + $4y = 360$
 $3x$ + $4y = 360$


We have Unlimited Supply of 30% & 60% acid Soln.
We need 30L of 50% acid Soln.
How many liters of each?


$$30\%$$
 + 60% = 50% $100\frac{30}{100}x + \frac{60}{100}y - \frac{50}{100}x$
 $x + y = 30$
 $x + y = 30$
 $20L + 35 - 60\%$ $2x + 2y = 50$
 $10L + 35 - 30\%$ $y = 20$
 $10L + 35 - 30\%$

Class Quiz
() find eqn of a line that contains
$$(-4,0) \notin$$

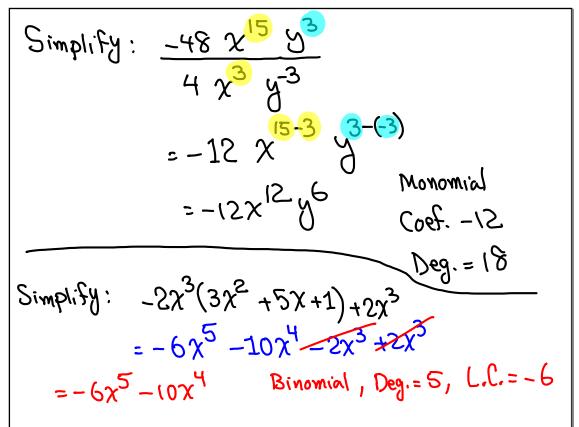
(0,8). $m = \frac{y_1 - y_2}{x_1 - x_2} = \frac{8 - 0}{0 - 4} = \frac{8}{4} = 2$
 $4 = mx + b$ $3 - 3 = m(x - x_1) = \frac{y - 2x + 8}{y - 8}$
(2) Find eqn of a line that contains the
Origin and perpendicular to $2x - 3y = 6$.
 $3y = -2x + 6$
 $y - 0 = -\frac{3}{2}(x - 0)$
 $y = \frac{-3}{2}x - 2$

Distribute
$$\xi$$
 Simplify
(1) -5 ($2x^{2} + 3x - 4$) + 15x -21
= -10x² - 15x + 20 + 15x -21 = -10x² - 1
(2) $2x^{2}(3x - 4) - 6x^{3} - 8x^{2}$
= $6x^{3} - 8x^{2} - 6x^{3} - 8x^{2} = -16x^{2}$

Monomial: number times Variables that
ove vaised to whole number exponent.

$$5\chi^2$$
, $-3\chi^3y^2$, $\frac{2}{3}\chi^6y^4z^2$, 2017
 1 , $23\chi^3y^2$, $\frac{2}{3}\chi^6y^4z^2$, 2017
 1 , $23\chi^3y^2$, $\frac{2}{3}\chi^6y^4z^2$, 2017
 1 , $20\chi^2$, $20\chi^$

Constant term (Monomial) has degree Zero.
ex:
(1)
$$-77X \rightarrow Coel.=-7$$
, $Deg.=1$
(2) $1337 \rightarrow Constant$, $Deg.=0$
(3) $\frac{4}{7}x^{6}y^{3}Z \rightarrow Monomial}{Coel.=\frac{4}{7}}$, $Deg.=6+3+1=10$


Binomial
$$\rightarrow$$
 Two monomials are separated by
 $+ \text{ or } - .$
 $4\chi +7, 6\chi^2 - 12\chi, -3\chi^2y^3 + 11\chiy$
 $7\chi^4 - 4\chi^7$
Trinomial \rightarrow Three monomials are separated
 $by + \text{ or } - .$
 $\chi^2 - 2\chi + 1, \frac{1}{2}\chi^6 + \frac{2}{3}\chi^1 - \frac{3}{4}\chi^2$
 $12\chi^2y^3z^4 - 8\chi^3y^2z^4 + 2017$

when many monomial are separated from each other by + or -, we have a Polynomial. $4\chi^{5} - 2\chi^{3} + 17\chi^{2} - 8$ $-2\chi^{6} - 8\chi^{5} + 12\chi^{4} - 3\chi^{3} + 9\chi^{2} - 100\chi + 1$ It is recommended to write polynomials in descending order. Exponents decrease as you move to the right.

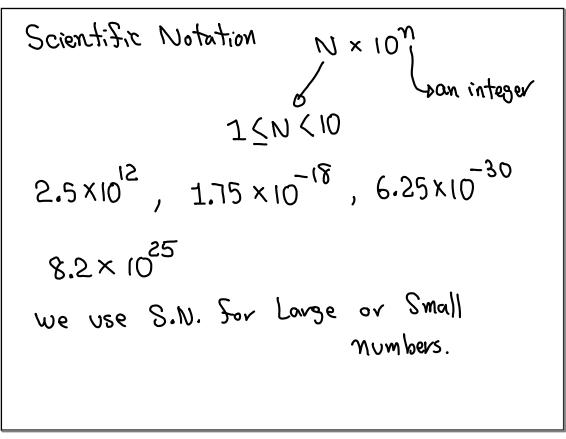
Consider
$$5x^{4} - 27x^{3} + 12$$

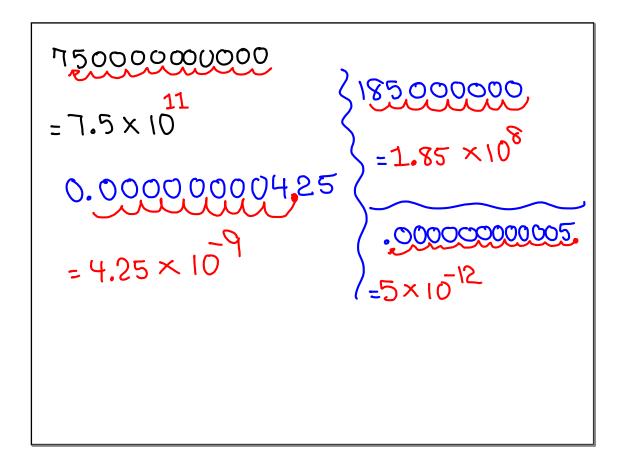
Monomials Coef. Degree
 $5x^{4}$ 5 4 For the entire
 $-27x^{3}$ -27 3 For the entire
 12 Constant 0 Deg. 4
Lead. Coef 5

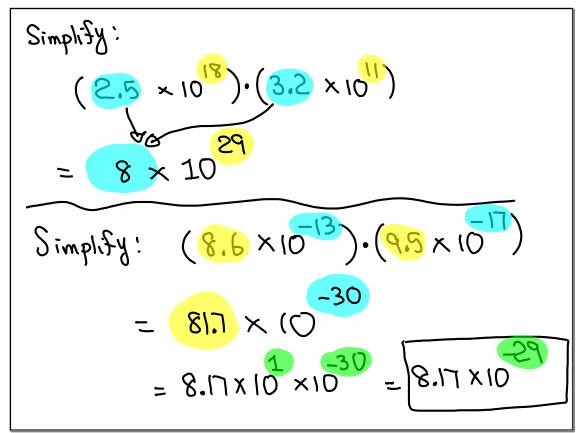
January 19, 2017

Simplify:
$$(3 \chi^{7})^{3} = (-3)^{3} (\chi^{7})^{3}$$

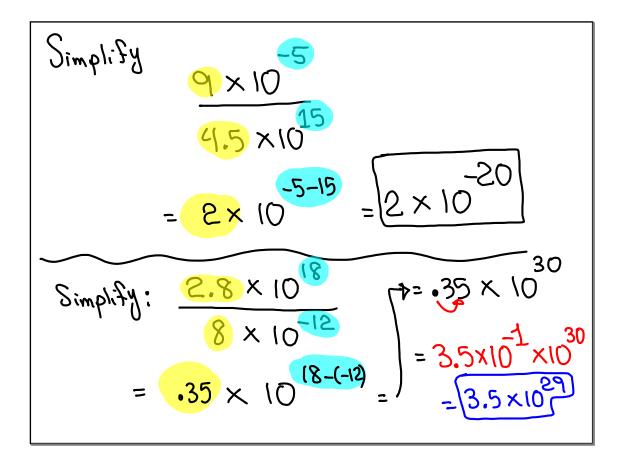
= -27 χ^{21}
Monomial
Coef. = -27, Deg.=21
Simplify: $(2 \chi^{2} y^{6})^{4} \cdot 5 \chi^{3} y$
= $2^{4} (\chi^{2})^{4} (y^{6})^{4} \cdot 5 \chi^{3} y$
= $16 \chi^{8} y^{24} \cdot 5 \chi^{3} y$ Deg 36
= $16 \chi^{8} y^{24} \cdot 5 \chi^{3} y$ Deg 36
= $80 \chi^{11} y^{25}$

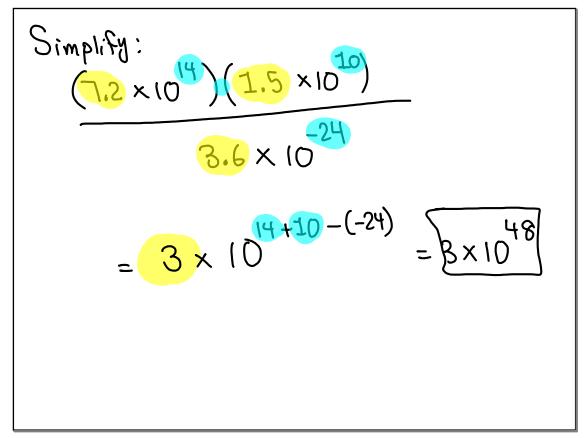



Simplify


$$4x^{2}y^{3}(-2xy^{2} + x^{3}y^{4} - 3x^{3}y)$$

 $= -8x^{3}y^{5} + 4x^{5}y^{7} - 12x^{5}y^{4}$
 $D=8$
 $D=12$ $D=9$
Trinomial, $Deg. = 12, L.C.=4$


Simplify $(3\chi^2 + 7)(2\chi^2 - 3)$ $=6\chi^{4} - 9\chi^{2} + 14\chi^{2} - 21$ $= 6\chi^4 + 5\chi^2 - 21$ Trinomial Deg.4 L.C. 6 Const: -21


Simplify $(7\chi^{5} - 3\chi^{2})(7\chi^{5} + 3\chi^{2})$ $= 49\chi^{10} + 21\chi^{7} - 21\chi^{7} - 7\chi^{4}$ Binomial $=49\chi^{10} - 9\chi^{4}$ Deg. = 10 L.C. =49

Simplify
$$\frac{2.1 \times 10^{-14}}{8.4 \times 10^{20}} = .25 \times 10^{-34}$$

$$0 2.1 \div 8.4 = .25$$

$$\frac{10^{-14}}{10^{20}} = 10^{-14-20} = 10^{-34}$$

$$= 2.5 \times 10^{-34} = -2.5 \times 10^{-35}$$