Math 115
 Winter 2017
 Lecture 10

Class Quiz
(1) Solve by graphing:

$$
\left\{\begin{array}{l}
3 x-4 y=12 \\
y=\frac{3}{4} x+2
\end{array}\right.
$$

(2) Solve:2 $2 x+3 y=-4$
$\Rightarrow\left\{\begin{array}{l}-4 x-85=8 \\ 9 x+8 y=-3\end{array}\right.$
$3\left\{3 x+2 y=-1 \quad\left\{\begin{array}{l}9 x+6 y=-3\end{array}\right.\right.$ $3(1)+2 y=-1 \quad 5 x=5 \Rightarrow x=1$

$$
\begin{gathered}
3+2 y=-1 \\
2 y=-4
\end{gathered} \rho y=-2
$$

$$
(1,-2)
$$

(1) find eqn of a line that contains $(2,0)$ \& $(0,-3)$.

$$
\begin{aligned}
m=\frac{0-(-3)}{2-0}=\frac{3}{2} \quad y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =\frac{3}{2}(x-0) \\
y+3 & =\frac{3}{2} x
\end{aligned}
$$

(2) find eqn of a line that contains $(3,-2)$ and Parallel to $2 x-3 y=5$.
$\rightarrow m=\frac{2}{3} \quad \Delta$ Same slope

$$
\begin{array}{ll}
-3 y=-2 x+5 \\
y=\frac{-2}{-3} x+\frac{5}{-3} & y-(-2)=\frac{2}{3}(x-3) \\
& y+2=\frac{2}{3} x-2 \\
& y=\frac{2}{3} x-4
\end{array}
$$

(3) Sind eqn of a line that contains $(-4,1)$ with
a) Zero slope

Horizontal line

$$
y=b
$$

c) Slope 2

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=2(x-4) \\
& y-1=2(x+4) \\
& y-1=2 x+8 \\
& y=2 x+9
\end{aligned}
$$

b) undefined slope

$$
\text { Vertical } \rightarrow x \text {-only } \rightarrow x=a
$$

$$
x=-4
$$

d) perpendicular to

$$
\begin{aligned}
& y=4 x-5 \\
& m=\frac{-1}{4} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{-1}{4}(x-4) \\
& y-1=\frac{-1}{4} x-1
\end{aligned}
$$

Graph ę Shade

$$
\left\{\begin{array}{l}
y \geq-3 \\
x \leq 2 \\
y<\frac{2}{3} x+4
\end{array}\right.
$$

John has $\$ 2.05$ in Quarters $\dot{\varepsilon}$ Dimes only. \# of quarters is 1 more than twice \# Dimes How many of each?

$$
\begin{aligned}
& \begin{array}{l}
D \rightarrow \text { Dimes } \\
R \rightarrow \text { Quarters }
\end{array}
\end{aligned}\left\{\begin{array}{l}
10 D+25 R=205 \\
R=2 D+1
\end{array}\right.
$$

Two angles are complementary.
The sum of 3 times one of them and twice the other one is 200°.
find the larger angle.

$$
\begin{aligned}
-2\left\{\begin{aligned}
& x+y=90 \\
& 3 x+2 y=200 \\
& x=20 \\
& 20+y=90 \\
& y=70
\end{aligned}\right.
\end{aligned}
$$

Two angles are supplementary.
5 times one of them is equal to 4 times the other one. $\quad\left\{\begin{array}{l}x+y=180 \\ \text { find both angles. } \\ 5 x=4 y\end{array}\right.$

$$
\begin{aligned}
& 4\left\{\begin{array} { l }
{ x + y = 1 8 0 } \\
{ 5 x - 4 y = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
4 x+4 y=720 \\
5 x-4 y=0
\end{array}\right.\right. \\
& 9 x \quad=720 \Rightarrow x=80
\end{aligned}
$$

we need 100 liters of 36% alcohol Soln. we have unlimited supply of 30% \& 40% alcohol Soln. How many liters of each do we need?

we have unlimited Supply of $30 \% \dot{\varepsilon} 60 \%$ acid Soln. we need 30 L of 50% acid Soln.
How many liters of each?

Class Quiz
(1) find eqn of a line that contains $(-4,0)$?

$$
\begin{aligned}
& (0,8) . \quad m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{8-0}{0--4}=\frac{8}{4}=2 \\
& y=m x+b \quad y-y_{1}=m\left(x-x_{1}\right) \\
& y=2 x+8
\end{aligned} \quad y-8=2(x-0) . y=2 x+8 .
$$

(2) find equ of a line that contains the origin and perpendicular to $2 x-3 y=6$.

$$
\begin{gathered}
y-0=-\frac{3}{2}(x-0) \\
y=-\frac{3}{2} x
\end{gathered}
$$

$$
m=\frac{-3}{2} \quad y=\frac{2}{3} x-2
$$

Use exponential Rules to Simplify

$$
\begin{aligned}
& \text { (1) }\left(\frac{-2}{3}\right)^{0}=1 \\
& x^{0}=1, x \neq 0 \\
& \text { (3) } x^{12} \cdot\left(x^{(4-3)}\right. \\
& =x^{12} \cdot x^{-12} \\
& =x^{0}=1
\end{aligned}
$$

$$
\text { (2) }\left(\frac{3}{2}\right)^{-3}=\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}
$$

$$
\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}
$$

$$
\text { (4) } \begin{aligned}
& \frac{-15 x^{8} y^{-2}}{3 x^{-4} y^{3}} \\
= & \frac{-15 x^{8} x^{4}}{3 y^{3} y^{2}} \\
= & -\frac{5 x^{12}}{y^{5}}
\end{aligned}
$$

$$
\text { (5) } \begin{aligned}
& \left(-5 x^{4} y^{2}\right)^{3} \\
= & (-5)^{3}\left(x^{4}\right)^{3}\left(y^{2}\right)^{3} \\
= & -125 x^{12} y^{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) }\left(\frac{2 x^{6}}{y^{5}}\right)^{4} \\
& =\frac{2^{4}\left(x^{6}\right)^{4}}{\left(y^{5}\right)^{4}}=\frac{16 x^{24}}{y^{20}}
\end{aligned}
$$

(7) $\left(\frac{1}{2}\right)^{-1}$

$$
=\left(\frac{2}{1}\right)^{1}=\frac{2}{1}=2
$$

$$
\text { (8) } \frac{\left(x^{7}\right)^{3} \cdot\left(x^{-4}\right)^{5}}{\left(x^{-6}\right)^{5} \cdot\left(x^{-4}\right)^{-7}}
$$

$$
=\frac{x^{21} \cdot x^{-20}}{x^{-30} \cdot x^{28}}=\frac{x^{21+(-20)}}{x^{-30+28}}
$$

$$
=\frac{x^{1}}{x^{-2}}=x^{1-(-2)^{n}}=x^{3}
$$

Distribute ¿. Simplify
(1)

$$
\begin{aligned}
& -5\left(2 x^{2}+3 x-4\right)+15 x-21 \\
& =-10 x^{2}-15 x+20+15 x-21=-10 x^{2}-1
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 2 x^{2}\left(3 x^{2}-4\right)-6 x^{3}-8 x^{2} \\
= & 6 x^{3}-8 x^{2}-6 x^{3}-8 x^{2}=-16 x^{2}
\end{aligned}
$$

find the area
(1)

$$
\begin{gathered}
A=L W \\
10 x^{4} y^{2} \\
A=\left(10 x^{4} y y^{2}\right)\left(4 x^{3} y\right) \\
A=40 x^{7} y^{3}
\end{gathered}
$$

(2)

$$
A=S^{2} 4 x^{6} y^{5}
$$

$$
A=\left(4 x^{6} y^{5}\right)^{2}
$$

(3)

$$
\begin{aligned}
& =\left(4^{2}\right)\left(x^{6}\right)^{2}\left(y^{5}\right)^{2} \\
& A=16 x^{12} y^{10}
\end{aligned}
$$

$$
\begin{aligned}
A=\frac{b h}{2}=\frac{6 x x^{8} y^{5} \cdot 4 x y^{3}}{e} & =24 x^{9} y^{8}
\end{aligned}
$$

Use FOIL to multiply

$$
\begin{aligned}
& \text { (1) }(3 x-2)(2 x-3) \\
& =6 x^{2}-9 x-4 x+6 \\
& =6 x^{2}-13 x+6
\end{aligned}
$$

$$
\text { (2) }\left(3 x^{2}+4\right)\left(3 x^{2}-4\right)
$$

$$
=9 x^{4}-2 x^{2}+4 x^{2}-16
$$

$$
=9 x^{4}-16
$$

(3)

$$
\begin{aligned}
& (5 x+3)\left(25 x^{2}-15 x^{4}+9\right) \\
& =125 x^{3}-75 x^{2}+45 x+75 x^{2}-45 x+27 \\
& =125 x^{3}+27
\end{aligned}
$$

Due Monday:
SG12, wP 8,9 , and 10
Agenda for Monday:
Exam 2: 6:00-7:35
Come early (5:50) if you Want extra time
Cumulative exam Formulas will be provided.

Finish ch. 4

Monomial: number times variables that are raised to whole number exponent.

Coff.
the exponent or Sum of the exponent is called degree
when there is no Variable \rightarrow Constant

$$
\begin{aligned}
-8 x^{3} & \rightarrow \text { Monomial } \\
& \rightarrow \text { Coef. }=-8 \\
& \rightarrow \text { Degree }=3
\end{aligned}\left\{\begin{array}{l}
\frac{3}{4} x^{7} y^{5} \\
\rightarrow \text { Monomial } \\
\rightarrow \text { Coff. }=\frac{3}{4}, \text { Deg. }=7+5=12
\end{array}\right.
$$

Constant term (Monomial) has degree Zero. ex:
(1) $-7 x \rightarrow \operatorname{Cof}=-7, \operatorname{Deg} .=1$
(2) $1337 \rightarrow$ Constant, Deg. $=0$
(3) $\frac{4}{7} x^{6} y^{3} z \rightarrow$ Monomial

$$
\text { Coff. }=\frac{4}{7}, \operatorname{Deg.g.~}=6+3+1=10
$$

Binomial \rightarrow Two monomials are separated by + or - .

$$
\begin{aligned}
& 4 x+7,6 x^{2}-12 x,-3 x^{2} y^{3}+11 x y \\
& 7 x^{4}-4 x^{7}
\end{aligned}
$$

Trinomial \rightarrow Three monomials are Separated

$$
\begin{gathered}
\text { by }+ \text { or }- \\
x^{2}-2 x+1, \frac{1}{2} x^{6}+\frac{2}{3} x^{4}-\frac{3}{4} x^{2} \\
12 x^{2} y^{3} z^{4}-8 x^{3} y^{2} z^{4}+2017
\end{gathered}
$$

when many monomial are Separated from each other by t or - , we have a Poly nomial.

$$
\begin{aligned}
& 4 x^{5}-2 x^{3}+17 x^{2}-8 \\
& -2 x^{6}-8 x^{5}+12 x^{4}-3 x^{3}+9 x^{2}-100 x+1
\end{aligned}
$$

It is recommended to write polynomials in descending order. exponents decrease as You move to the right.

Consider $5 x^{4}-27 x^{3}+12$

Monomials	Corf.	Degree
$5 x^{4}$	5	4
$-27 x^{3}$	-27	3
12	Constant	0

For the entire trinomial Deg. 4 Lead. Coff 5

$32 x^{8} y^{3}$	$-45 x^{6} y^{2}$	$+100 x y-2017$	
Monomial	Coff.	Degree	
$32 x^{8} y^{3}$	32	$8+3=11$	
$-45 x^{6} y^{2}$	-45	$6+2=8$	Deg. $=11$
$100 x y$	100	$1+1=2$	C.C. $=32$ -2017
Constant	0	oust. 0	

Polynomial

Simplify:

$$
\begin{aligned}
\left(-3 x^{7}\right)^{3}= & (-3)^{3}\left(x^{7}\right)^{3} \\
= & -27 x^{21} \\
& \text { Monomial } \\
& \text { Coff. }=-27, \text { Deg }=21
\end{aligned}
$$

Simplify:

$$
\begin{array}{ll}
\left(2 x^{2} y^{6}\right)^{4} \cdot 5 x^{3} y & \text { Monomial } \\
=2^{4}\left(x^{2}\right)^{4}\left(y^{6}\right)^{4} \cdot 5 x^{3} y & \text { Coff. } 80 \\
=16 x^{8} y^{24} \cdot 5 x^{3} y & \operatorname{Deg} 36 \\
=80 x^{11} y^{25} &
\end{array}
$$

$$
\text { Simplify: } \begin{aligned}
& \frac{-48 x^{15} y^{3}}{4 x^{3} y^{-3}} \\
& =-12 x^{15-3} y^{3-(-3)} \\
& =-12 x^{12} y^{6}
\end{aligned}
$$

Monomial
Coff. -12

Simplify:

$$
\begin{aligned}
\text { uplify: } \begin{aligned}
& -2 x^{3}\left(3 x^{2}+5 x+1\right)+2 x^{3} \\
= & -6 x^{5}-10 x^{4}-2 x^{3}+2 x^{5} \\
= & -6 x^{5}-10 x^{4} \quad \text { Binomial, Deg. }=5, \quad \text { L.C. }=-6
\end{aligned}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& 4 x^{2} y^{3}\left(-2 x y^{2}+x^{3} y^{4}-3 x^{3} y\right) \\
& =-8 x^{3} y^{5}+4 x^{5} y^{7}-12 x^{5} y^{4} \\
& D=8 \quad(D=12 \quad D=9
\end{aligned}
$$

Trinomial, Deg. $_{=}=12$, L.C. $=4$

Simplify

$$
\begin{aligned}
& \left(3 x^{2}+7\right)\left(2 x^{2}-3\right) \\
& =6 x^{4}-9 x^{2}+14 x^{2}-21 \\
& =6 x^{4}+5 x^{2}-21 \quad \text { Trinomial } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { Deg. }-4 \\
& \text { Cons: } 6
\end{aligned}
$$

Simplify

$$
\begin{array}{r}
\left(7 x^{5}-3 x^{2}\right)\left(7 x^{5}+3 x^{2}\right) \\
=49 x^{10}+21 x^{7}-21 x^{1}-9 x^{4} \\
=49 x^{10}-9 x^{4} \quad \begin{array}{l}
\text { Binomial } \\
\text { Deg. }=10 \\
\text { L.C. }=49
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Scientific Notation }{ }^{0} N \times 10^{n} \text { Lan integer }^{0}<10 \\
& 2.5 \times 10^{12}, 1.75 \times 10^{-18}, 6.25 \times 10^{-30} \\
& 8.2 \times 10^{25}
\end{aligned}
$$

we use S.N. For Large or Small numbers.

Simplify:

$$
\begin{aligned}
& \left(2.5 \times 10^{18}\right) \cdot\left(3.2 \times 10^{11}\right) \\
= & 8 \times 10^{29}
\end{aligned}
$$

Simplify: $\left(8.6 \times 10^{-13}\right) \cdot\left(9.5 \times 10^{-17}\right)$

$$
\begin{aligned}
& =81.7 \times\left(0^{-30}\right. \\
& =8.17 \times 10^{1} \times 10^{-30}=8.17 \times 10^{2}
\end{aligned}
$$

Simplify	$\frac{9 \times 10^{-5}}{4.5 \times 10^{15}}$
$=$	$2 \times 10^{-5-15}=2 \times 10^{-20}$
Simplify:	$=\frac{2.8 \times 10^{18}}{8 \times 10^{-12}} \quad\left[=.35 \times 10^{30}\right.$
$=$	$.35 \times 10^{18-(-12)}=3.5 \times 10^{-1} \times 10^{30}$
$=3.5 \times 10^{29}$	

Simplify:

$$
\begin{aligned}
& \frac{\left(7.2 \times 10^{\text {mplity }}\right)\left(1.5 \times 10^{10}\right)}{3.6 \times 10^{-24}} \\
& =3 \times 10^{14+10-(-24)}=3 \times 10^{48}
\end{aligned}
$$

Simplify $\frac{2.1 \times 10^{-14}}{8.4 \times 10^{20}}=.25 \times 10^{-34}$
(1) $2.1 \div 8.4=.25$

$$
=2.5 \times 10^{-1} \times 10^{-34}
$$

$$
\text { (2) } \frac{10^{-14}}{10^{20}}=10^{-14-20}=10^{-34}
$$

